A Scale Adaptive Mean-Shift Tracking Algorithm for Robot Vision
نویسندگان
چکیده
منابع مشابه
Robust Scale-Adaptive Mean-Shift for Tracking
Mean-Shift tracking is a popular algorithm for object tracking since it is easy to implement and it is fast and robust. In this paper, we address the problem of scale adaptation of the Hellinger distance based Mean-Shift tracker. We start from a theoretical derivation of scale estimation in the Mean-Shift framework. To make the scale estimation robust and suitable for tracking, we introduce reg...
متن کاملScale and Orientation Adaptive Mean Shift Tracking
A scale and orientation adaptive mean shift tracking (SOAMST) algorithm is proposed in this paper to address the problem of how to estimate the scale and orientation changes of the target under the mean shift tracking framework. In the original mean shift tracking algorithm, the position of the target can be well estimated, while the scale and orientation changes can not be adaptively estimated...
متن کاملKernel Bandwidth Adaptive Target Tracking Algorithm Based on Mean - Shift
The kernel bandwidth of the classical Mean-Shift tracking algorithm is fixed, and it usually results in tracking failure when the target’s size changes. A kernel bandwidth adaptive Mean-Shift tracking algorithm is presented with frame difference method to solve the question in this paper. According to the targets’ size obtained from the inter-frame difference method, the bandwidth matrix of ker...
متن کاملA Weighted Adaptive Mean Shift Clustering Algorithm
The mean shift algorithm is a nonparametric clustering technique that does not make assumptions on the number of clusters and on their shapes. It achieves this goal by performing kernel density estimation, and iteratively locating the local maxima of the kernel mixture. The set of points that converge to the same mode defines a cluster. While appealing, the performance of the mean shift algorit...
متن کاملMean-shift Blob Tracking through Scale Space
The mean-shift algorithm is an efficient technique for tracking 2D blobs through an image. Although the scale of the mean-shift kernel is a crucial parameter, there is presently no clean mechanism for choosing this scale or updating it while tracking blobs that are changing in size. In this paper, we adapt Lindeberg’s theory of feature scale selection based on local maxima of differential scale...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2013
ISSN: 1687-8140,1687-8140
DOI: 10.1155/2013/601612